
Verito: A Practical System for Transparency and Accountability in Virtual

Economies

Raghav Bhaskar, Saikat Guha, Srivatsan Laxman, Prasad Naldurg
Microsoft Research India, Bangalore, India

{rbhaskar,saikat,slaxman,prasadn}@microsoft.com

Abstract

Purchase of virtual goods and services is now a major

source of revenue for developers on platforms like Face-

book, Xbox, and iOS. These virtual economies are typi-

cally based on users maintaining a stored-value account

of virtual-currency (purchased with real-currency) with the

platform. While the model is similar to that of a bank,

these economies lack transparency and regulatory over-

sight that protect a consumer’s financial interests. We

propose Verito, a practical solution that provides trans-

parency and accountability in this context. We combine

state-of-the-art cryptographic constructs in novel ways to

design a system that provides four desirable properties, viz.,

transparency (money-in equals money-out), fairness (users

treated equally), non-repudiation (users’ virtual money is

safe), and scalability (low processing and storage costs).

Our design also accommodates nuances such as support for

multiple-currencies, and defense against arbitrage, while

addressing scalability bottlenecks. We present an exper-

imental evaluation based on our implementation of Ver-

ito and study its performance characteristics. Overall, we

show that it is possible to protect consumer interests in vir-

tual economies in a practical manner, without relying only

on regulation.

1 Introduction

Virtual economies, where users buy virtual goods and

services, have seen phenomenal growth in recent years.

Facebook transacts over 1.5 billion dollars in in-game pur-

chases for social games like Farmville and Mafia Wars, ac-

counting for 15% of its net 2011 revenue [5]; the market

has averaged around 300% year-on-year growth over the

last three years as reported by Facebook [5]. In-app pur-

chases netted Apple, Google and Xbox over 2.1 billion dol-

lars in 2011 [6]. Massively-multiplayer online games such

as Second Life, World of Warcraft, and the Sims Online

have thriving economies, including black-markets for users

to convert between real and virtual currency for games that

prohibit this practice [2, 14].

These economies typically use a virtual currency rather

than a real currency for individual transactions. This is be-

cause there are a large number of small-valued transactions

(sometimes of just a few cents). Using real currency for in-

dividual transactions is uneconomical due to regulatory and

compliance obligations for financial transactions. As a re-

sult, most economies allow the user to purchase virtual cur-

rency in bulk (using real currency); merchants are similarly

paid in bulk. Examples of these virtual currencies include

Facebook credits, Linden dollars (Second Life), and Xbox

points.

Virtual economies are not regulated. Facebook, for in-

stance, declared “in July 2010, we seeded users with free

seeded credits [...] in order to drive user awareness and ed-

ucation around credits. These credits are zero-value, and

developers do not realize revenue from them when spent by

users.” [4]. In essence, Facebook unilaterally devalued its

currency overnight. Unfortunately for developers, an un-

intentional consequence was that the effective conversion

rate from Facebook credits to dollars became unpredictable.

Since credits are opaque to the developer, for a batch of 100

credits, the developer could be paid anywhere between the

fair value of 0 and 100 credits; the developer would have no

way to verify if he was paid correctly. Facebook reserves

for itself the right to seed these zero-valued credits at any

time and for any reason [4].

The global reach of these virtual economies introduces

additional complications. Xbox points were, for instance,

priced similarly in all currencies when they were first in-

troduced (around $1 for 80 points). However, due to fluc-

tuating currency exchange rates, the current value of these

points varies considerably between regions. This can create

an arbitrage scenario where a merchant can turn a profit by

buying points in one currency and encashing it in another.

Currently, points purchased in one currency cannot be spent

in a different geography. Further, trading points between

user accounts is also not supported.

Our main contribution with Verito is a technical solution

1

that provides transparency in accounting in such economies

without relying on external audits or trusted third parties.

Applied to Facebook, Verito would allow game developers

to verify that they were paid correctly, while preserving user

privacy. Applied to Xbox, Verito would allow promotional

points, with flexible support for multiple currencies and user

relocation, while preventing arbitrage.

We identify and define the accountable virtual economy

problem as having the following properties. First, is trans-

parency, i.e., money entering the economy (e.g., through

user purchase of credits) should equal money exiting the

economy (either as payments to merchants, or as commis-

sions and fees charged by the platform). Second, is fair-

ness, i.e., the merchants should not be able to distinguish

between credits acquired at different rates and treat users

differently. However, the platform should be able to distin-

guish between credits of different values (e.g., zero-value

vs. non-zero value for Facebook, different currencies for

Xbox points, etc.). Third, is non-repudiation of transac-

tions to protect users, merchants and the platform. Fourth,

is scalability of processing, storage, and network costs. We

formalize these properties in Section 2.

Verito combines existing cryptographic constructs in a

novel way. At a high-level, we use homomorphic com-

mitments [32] to create an audit trail for virtual transac-

tions. A naı̈ve application of commitments, however, may

compromise fairness when the commitments are eventually

opened. A second problem is the storage requirements for

non-repudiation (e.g., to prevent a user from spending a

credit multiple times), which would normally require a large

database. We address the first issue through aggregate com-

mitments, and the second by combining commitments with

dynamic accumulators [17]. While accumulators solve the

storage issue, a naı̈ve application of accumulators would in-

cur high network and processing overheads. Our construc-

tion avoids both these issues. We present a detailed design

of our approach in Section 3, and formally define and prove

that the design achieves our properties in Section 4. Sec-

tions 5 and 6 report on our implementation of Verito and

experimental evaluation that demonstrates its practicality.

We also outline how Verito can be deployed incrementally,

as a proxy service that is available to interested users and

developers of any platform.

There is considerable interest in virtual currencies,

though much of it is focused on legal and regulatory as-

pects (See Section 8). One technical solution, which is de-

signed with similar goals of transparency and accountabil-

ity in mind, is Bitcoin [1]. However, Bitcoin assumes a

fully-decentralized world, where every Bitcoin user tracks

the history of every credit and ratifies every transaction.

This is impractical in our setting, with millions of credits

and transactions. There is also a substantial body of work

concerning e-cash [18] and related schemes, which seek to

Figure 1. Architecture of an accountable vir

tual economy.

provide anonymity and unlinkability, and are not directly

applicable.

Overall this paper makes three contributions: First, we

define the accountable virtual economy problem, and iden-

tify the properties which make it an interesting research

problem that is highly-relevant to industry. Second, we

present a rigorous solution that addresses this problem

through a novel combination of commitments and accu-

mulators. Finally, we build and evaluate our proposed ap-

proach, and find it to be practical and scalable on current

hardware. In Section 7 we also discuss how it can be de-

ployed incrementally, and in response to stronger regulatory

laws.

2 Accountable Virtual Economy

In this section, we formulate the accountable virtual

economy problem. We first introduce the players, define

the transactions between them, and call out the properties

that must be satisfied in this context.

2.1 Players

There are three types of players in a virtual economy as

shown in Fig. 1. First, we have the platform (P) which owns

and maintains the infrastructure, e.g., an online-gaming

ecosystem. Examples of such platforms include Facebook

and Xbox Live. Next there are the merchants (M) who are

registered with a P and use P’s infrastructure to host their

services. Examples ofMs include companies like Zynga,

which make games like Farmville, Cityville and MafiaWars

hosted on Facebook. Finally, there are the users (U) who

are also registered with P and interface with the services

provided byMs.

As a part of its business infrastructure, P issues and reg-

ulates credits, which can be thought of as a form of virtual

currency. Users playing a game can either purchase or earn

these credits, and subsequently redeem them withM to buy

Figure 2. A credit message

virtual goods (such as tractors in Farmville) and services. In

other words,Ms can offer products and services to users in-

exchange for credits, andMs can later encash spent credits

at P .

Each credit is associated with a nominal value, which is

equal to the price that the P charged a user for its purchase.

Credits can be associated with different nominal values. For

example, in Xbox Live, 80 credits (Microsoft Points) can

be purchased for 1 USD, but cost 54.4 INR in India, and

are not tied to the current exchange rate. There are many

reasons for this, including different market conditions, dif-

ferent regulations, and tax laws across geographical regions.

In addition, Ps (orMs) can hand out free credits to users,

which do not have any monetary value when they are re-

deemed. These can be thought of as loyalty points or incen-

tives to increase user participation as exercised by Facebook

in 2010. Verito is architected to support multiple types of

credits (including e.g., zero value credits, credits in differ-

ent currencies, and discounted credits in the same currency),

with a predefined maximum limit on the number of distinct

nominal values a credit can be associated with.

One of the requirements in these virtual economies is

that no matter what the nominal value, anM must provide

the same experience for each credit spent by Us. That is,

at the time of spend by users, Ms cannot distinguish the

nominal values of individual credits directly. This ensures a

fair and consistent experience for users.

A credit in Verito is a commitment on a message which

describes the nominal value of the credit. The message (hid-

den in the credit) comprises of exactly log2 q bits, which is

divided into ⌊ log2 q

k
⌋ buckets each of size k, as shown in

Figure 2. q is a security parameter in the system (i.e., re-

lated to a large prime), and k is a fairness parameter in the

system (i.e., aggregation level for revealed commitments).

Different buckets represent different distinct nominal val-

ues. A valid credit message has the least significant bit set

to one for exactly one bucket. The rest of the message is

filled with zeros. The bucket with the non-zero bit implic-

itly indicates the nominal value of the credit applied for its

purchase. Thus, the number of distinct nominal values we

can support is determined by system parameters q and k

(and is equal to ⌊ log2 q

k
⌋).

2.2 Transactions

We now describe the transactions (or interfaces) in a vir-

tual economy. Let CREDITS denote a set of credits and let

MONEY denote its corresponding aggregate nominal value.

Since the set may contain credits with different nominal val-

ues, MONEY must be thought of as an array of aggregate

values, where the jth entry represents the aggregate cor-

responding to jth distinct nominal value. Thus, MONEY[1]
may, for instance, correspond to credits purchased at 80

credits per USD in the US, MONEY[2] to credits purchased

at 1.47 credits per INR in India, etc. There are three trans-

actions in a virtual economy, namely, PURCHASE, SPEND

and ENCASH (See Fig. 1):

1. PURCHASE (U , MONEY):

• Description: U buys credits worth MONEY from

P . There will only be at most one non-zero en-

try in the MONEY array (which corresponds to

the particular nominal value applied for this pur-

chase). A zero-value credit, issued as incentive,

may also be “purchased” from the P using the

same interface.

• Initiated by: U

• Output: CREDITS

2. SPEND (U ,M, CREDITS):

• Description: U gives CREDITS to M in-

exchange for virtual goods and/or services. Dif-

ferent CREDITS may contain distinct nominal

values.

• Initiated by: U

• Output: None

3. ENCASH (M, CREDITS):

• Description: M deposits CREDITS to P and

gets back MONEY corresponding to (1-PROFIT)

times the aggregate value of CREDITS (where

PROFIT represents the fixed profit margin of P
that is published ahead of time). Again, for each

j, P paysM a sum of MONEY[j] for credits asso-

ciated with the jth distinct nominal value.

• Initiated by:M

• Output: MONEY

2.3 Properties

Currently, virtual economies strongly rely on fair play

by the platform for their accountability. Our goal is develop

a system that minimizes trust assumptions on the platform.

To this end, we identify four system-wide properties that an

accountable virtual economy should support, namely trans-

parency, fairness, non-repudiation, and scalability. We do

not require merchants or users to trust the platform as long

as neither colludes with the platform to compromise the

other.

• Transparency: This property ensures that all the

money in the system can be properly accounted for.

Let MONEYIN denote the total value of all the real cur-

rencies that users have used to purchase credits inside

the virtual economy. Let MONEYOUT denote the total

amount of real currencies that P has paid-out to mer-

chants in ENCASH transactions. As earlier, MONEYIN

and MONEYOUT are represented as arrays with the jth

entry corresponding to the jth distinct nominal value.

The set of currently valid (unspent) credits is de-

noted VALIDCR and the set of credits already en-

cashed by M is denoted ENCASHEDCR. The subset

of VALIDCR constituted by credits associated with

the jth nominal value is denoted VALIDCRj and sim-

ilarly ENCASHEDCRj is the corresponding subset of

ENCASHEDCR. Given any set of credits associated

with same nominal value, its aggregate value is given

by the function Value(·).

For transparency we will require that the money within

each nominal value bucket is properly accounted for.

To this end an accountable virtual economy should en-

force the following system-wide property at all times

(invariant) and for all j:

MONEYIN[j] = MONEYOUT[j] + Value(VALIDCRj)

+ PROFIT ∗Value(ENCASHEDCRj)(1)

where MONEYOUT[j] is given by:

MONEYOUT[j] = (1−PROFIT)∗Value(ENCASHEDCRj)
(2)

This security property can be satisfied if CREDITS

←PURCHASE (U , MONEY) satisfies

Value(CREDITS) = MONEY

and MONEY←ENCASH (M, CREDITS) satisfies

MONEY = (1− PROFIT) ∗Value(CREDITS) (3)

The first condition above guarantees transparency for

the user, while the second one guarantees it for the

merchant.

• Fairness: This property ensures that an M cannot

preferentially treat users based on the values of cred-

its used in the game. For this, we need to hide from

M, the nominal value of credits spent in any individ-

ual SPEND (U ,M,CREDITS) transaction. Note that

the system must allowMs to check the correctness of

money received from P in ENCASH (M,CREDITS)

transactions, without allowing anM to eventually in-

fer the value of credits in any individual spend transac-

tion.

• Non-repudiation: The third security property disal-

lows any party from repudiating any transaction after-

the-fact. For example, a user should not be able to

deny having spent a credit (in an attempt to re-spend

that credit), and a merchant should not be able to deny

having encashed a credit.

• Scalability: For scalability, P must not have to store

each credit issued. While users and merchants natu-

rally have to store each credit in their possession, net-

work costs for any transaction they engage in must be

a function of the number of credits exchanged in that

transaction (and not a function of the total number of

credits in their possession).

Note that both Ms and Ps have a natural incentive to

detect any fraud by Us involving use of invalid credits or

re-use of already spent credits. Further, P has a natural in-

centive to ensure that Ms do not encash credits that were

already paid out. No other trust assumptions are needed

except that there are no collusions between the players.

Specifically, it is trivially possible for the user and platform

to collude and and erode a merchant’s revenue. Similarly, a

merchant and the platform can collude to deny fair service

to the user. Finally, since an accountable virtual economy

by design ensures that the money associated with every dis-

tinct nominal value is separately accounted for, it automati-

cally prevents arbitrage that can arise out of differentials in

currency exchange rates. We explain how Verito provides

support for these properties using cryptographic schemes in

the next section.

3 Verito

In this section, we describe our approach to achieve the

properties proposed in Section 2. To recall, the key prop-

erties are transparency, fairness, non-repudiation and scala-

bility. We explain the underlying cryptographic primitives,

and describe our Verito scheme that uses these primitives in

detail. In Section 4, we formally define our security proper-

ties and explain how our design meets these goals.

3.1 Preliminaries

To ensure transparency while maintaining fairness, we

use homomorphic commitments on the credit values. A

commitment to the credit value hides the actual value but

allows the credit values to be aggregated (see next subsec-

tion for details.) To get non-repudiation and scalability, we

use an efficient cryptographic primitive called dynamic ac-

cumulators, without requiring zero-knowledge proofs that

make them inefficient in traditional applications, to track all

the credits ”spent” and ”encashed”. These accumulators re-

quire much less storage at the platform than the traditional

approach of maintaining lists or hashed trees.

3.1.1 Commitment scheme

A commitment scheme is a protocol executed by a sender

and a receiver and has two stages, Commit and Reveal.

During the Commit stage, the sender commits to a (secret)

value to the receiver, by sending some function of the value.

Knowledge of the committed value does not allow the re-

ceiver to learn anything about the secret value. In the sec-

ond phase, the sender reveals the hidden value along with

some useful auxiliary information, which the receiver can

use to check the validity of the revealed value. Homomor-

phic commitments have the additional property that mul-

tiplying two commitments results in a commitment on the

sum of their committed messages, without revealing indi-

vidual values. More formally, a commitment scheme con-

sists of three algorithms: Setup, Commit and Open. The

Setup algorithm generates a public commitment key which

is used by either party to commit to a message m to the other

party. The committing party runs the Commit algorithm to

commit to a message m and sends the output c of the algo-

rithm to the other party. At some future time, the commit-

ting party can open the commitment by sending the message

m with auxiliary information aux to the other party. The

second party checks the correctness of the committed value

by running Open(c, aux). A secure commitment scheme

has two security properties: hiding and binding. The hiding

property ensures that the other party cannot learn anything

about the committed message m even after receiving the

output of the Commit algorithm. The binding property en-

sures that the committing party cannot “open” the commit-

ment to a different message m, once the Commit algorithm

has been executed. An additively homomorphic commit-

ment scheme has the additional property that a commitment

on m1 +m2 can be computed directly from the individual

commitments on m1 and m2, i.e. Commit(m1 + m2) =
Commit(m1)⊙Commit(m2). Several homomorphic com-

mitment schemes are known [10, 19, 32]. In our protocol,

we use Pedersen’s commitment scheme [32], which is one

of the most efficient additively homomorphic commitment

schemes.

Setup(1k): Takes a security parameter k as input and gen-

erates a (k+1) bit prime prime p such that p = 2q+1 where

q is prime. Pick a random generator g of Z∗

q and a random

element h of Z∗

q .

Commit(m ∈ Zq): In order to commit m, choose random

element r ∈ Z
∗

q and output c = grhm mod p.

Open(c, r, m): Outputs 1 if grhm mod p equals c else 0.

Note r is revealed in this step allowing the validation of the

hidden value m.

3.1.2 Dynamic Accumulators

Another cryptographic primitive that we use in Verito is a

dynamic accumulator. Cryptographic accumulator schemes

allow a publisher to “hash” a large set of input values to a

single short value (typically, of constant-size) called the ac-

cumulator [13, 15, 17], and provide for checking if a value

is contained (or alternately not contained) in the set rep-

resented by the accumulator, by generating a witness. It

is infeasible to find a witness for a value that was not ac-

cumulated. Accumulators have been proposed for revoca-

tion lists in anonymous credential systems, for identity es-

crow, and group signatures etc. Dynamic accumulators [17]

further extend this functionality by allowing dynamic ad-

dition or deletion of input values to this accumulator effi-

ciently, where the cost of the add or delete is independent

of the number of accumulated values. We use accumu-

lators in the context of checking double-spending/double-

encashing of credits (for non-repudiation by users or mer-

chants), though we do not use the accompanying (often ex-

pensive) Zero-knowledge protocols that are often required

in settings requiring anonymity. Different dynamic accu-

mulator schemes have been proposed, including those based

on the strong RSA assumption [17], and from bilinear pair-

ings [16, 28]. Accumulators can represent either the list of

valid values (white-list) or the list of invalid values (black-

list).

Any secure accumulator consists of four algorithms Ac-

cGen, AccAdd, AccWitUpdate, and AccVerify. There

are typically four actors: an accumulator authority, an (un-

trusted) update entity, users and verifiers. The accumula-

tor authority runs the AccGen algorithm after creating a

new accumulator key pair (skA, pkA). New values can be

added to the accumulator accV using the AccAdd to obtain

a new value acc′V . AccAdd produces a witness witi. Both

accV and witi are of fixed length. Each time an accumu-

lator changes, witi becomes invalid. All witnesses need to

be updated, and this can be offloaded to a witness-update

entity, which does not need any secret security parameters.

Users who obtain the current witness for a value i can prove

to any verifier that this value is in the accumulator using

AccVerify. In our architecture, the role of the authority and

the verifier is played by P . The role of the users is played

by U in the SPEND transaction and by M in the ENCASH

transaction. There is no third party update entity. U and

M can update their witnesses by receiving a witness update

from P .

Now we present technical details of the dynamic univer-

sal accummulator (DUA) scheme used in our implementa-

tion. This scheme is due to Au et al., [11], which is based

on an original proposal by Nguyen [28]. The scheme uses

Bilinear pairings and augments Nguyen’s construction to

work on the ring of polynomials over a finite field (i.e., a

Euclidean domain). The security of this scheme is based on

the strong or decisional Diffie-Hellman assumption.

A bilinear pairing is a mapping from a pair of group el-

ements to another group element. Let G1 and G2 be cyclic

groups of prime order p. Let g be a generator of G1. Func-

tion ê : G1 × G1 −→ G2 is a bilinear map if:

• Each element in G1, G2 has a unique binary represen-

tation.

• ê(Ax, gy) = ê(A,B)
xy

for all A,B ∈ G1 and x, y ∈
Zp (bilinearity).

• ê(g, g) 6= 1, 1 is identity in G2.

• Computation of ê(A,B) is efficient.

We now describe the various algorithms:

AccGen: Let ê : G1 × G1 −→ G2 be a bilinear pairing

such that |G1| = |G2| = p for some λ bit prime p (λ is

the security parameter). Let g0 be a generator of G1 and

Gq =< h > be a cyclic group of prime order q such that

Gq ⊂ Z
∗

p. The generation algorithm picks α randomly from

Z
∗

p. Define function f : Z
∗

p × Z
∗

p −→ Z
∗

p such that f :
u, y → u(y+α). Define function g : Z∗

p×G1 s. t., g : y →
g
y
0 . The domain of accumulatable elements is Gq and the

auxiliary information is α. To compute the accummulator

v = g ⊗ f(1, Y) if α is available is efficient. If α is not

available, one can publish gα
i

0 for i = 0, k where k is the

maximum number that can be accumulated. If we denote

the polynomial
∏

y∈Y (y+α) =
∑i=k

i=0(uiα
i) of maximum

degree k as v(α), then v = g ⊗ f(1, Y) can be efficiently

computed as
∏i=k

i=0 g
ui

i ∈ G1 without knowledge of α.

AccAdd: To add element y to the accumulator v, compute

v̂ = vy+α. Deleting y from v gives v̂ = v
1

y+α . Both cases

require knowledge of α.

AccWitUpdate: Let w is the original witness for y and

v the original accumulator. If y′ has been added, the new

membership witness for y can be computed as vwy′
−y .

AccVerify: The verification relation Ω(w, y, v) = 1 iff

ê(w, gy0 , g
α
0) = ê(v, g0). For elements Y = y1, · · · , yk ∈

Gq , a membership witness for y ∈ Y can be computed as:

• w = (
∏i=k

i=1(yi + α). 1
α+y

if α is known

•
∏i=k

i=1 g
ui

i ∈ G1 otherwise

Please refer to [11] for a detailed description of its con-

struction and properties.

3.2 Verito Protocol

At a high-level, Verito works as follows: When a user

initiates a PURCHASE transaction, P creates the required

number of credits by committing to the nominal value re-

quested (using Commit), and sends them to U . P also pro-

vides U with a commitment key so that U may open the

credits and verify the nominal value of each credit. This

is implemented as CheckCredit, implemented as Open(c,

r, m) as described in the Pedersen’s commitment scheme

earlier. P also white-lists the credits generated by adding

them to the accumulator (using AccAdd) it maintains per

U ; this results in a witness for each credit added to the ac-

cumulator, whichP sends to U along with the credits. Since

modifying the accumulator requires that existing witnesses

(of past credits still in the user’s possession) are updated, P
computes the witness update for the transaction and sends it

to U . The witness update is a single quantity (independent

of the number of credits in the user’s possession). U com-

bines the witness update with the witness for each credit

in his possession (using AccWitUpdate) to derive the new

witness for that credit.

The SPEND transaction proceeds as follows: U first ac-

quires a transaction nonce from a merchantM; this is used

to ensure freshness and protect against replay attacks. Next,

U contacts P with the credit(s) it would like to spend along

with their witnesses, the merchantM it would like to spend

the credits with, and the nonce. P verifies that the credits

are present in the accumulator (white-list using AccVerify)

it is maintaining for U . If the verification succeeds, it up-

dates the accumulator by removing the credits spent (using

AccAdd) and sends U a witness update, so U can update the

witnesses of other credits in his possession. Note that if U
attempts to re-spend credits he previously spent, the mem-

bership check in the accumulator (white-list) will fail and

the transaction will be aborted.

When the SPEND transaction succeeds, P also adds the

spent credits to the accumulator (using AccAdd) he is main-

taining for the merchant (i.e., merchantM sent by the user

when he initiated the transaction). This accumulator forM
is used as a white-list to protect against M attempting to

encash a credit multiple times. The witness update (for the

merchant) that this generates, and the transaction nonce, are

together signed by P as a receipt for the transaction. P
sends this receipt to U , who forwards it to M as proof of

the transaction along with the actual credits.M stores these

credits and applies the witness update (using AccWitUp-

date).

In the ENCASH transaction,M sends a set of credits and

their respective witnesses to P . As before, P checks if the

credits are indeed present in the merchant’s accumulator

(using AccVerify). If the verification succeeds, it updates

the accumulator by removing the credits and returning the

witness update. It also reveals to the merchant the aggre-

gate commitment opening key (the sum of individual credit

opening keys) for the set of credits encashed. The merchant

opens the set of credits to learn the aggregate nominal value

of the credits he encashed. WhenM is later paid, he can en-

sure his payment matches the aggregate he computed (while

accounting for P’s profit).

3.2.1 Concrete Instantiation

Our concrete construction uses the additively homomorphic

commitment scheme of Pedersen described above to gener-

ate credits. The dynamic accumulator scheme of [11, 28]

is used to check the validity of the credits in an efficient

manner. The details are provided below:

1) SETUP (1k): P runs this algorithm to set up the sys-

tem parameters. It takes the security parameter as input and

generates a symmetric key K and a public-private key pair

(pk, sk). While K is used byP to encrypt parts of the credit

that it wants to hide fromM, sk is used to sign messages.

P shares this pk with all users and game developers. For

each user U and game developerM, it runs AccGen(1k, n)

to initialize their respective dynamic accumulators.

2) PURCHASE (U , MONEY): The Purchase transaction is

initiated by user U by sending its id and the amount #cred-

its to P . P creates #credits number of credits, where each

credit is constructed as follows: Depending on the currency

type and other transaction details, P chooses the bucket i

to be populated in the credit. It defines m = 2j where

j = (i− 1)× k. It chooses r uniformly at random from Zq

and computes gr · hm mod p. Then, it adds the credit to the

U ’s accumulator by calling AccAdd(U , gr ·hm mod p). The

returned witness update wit also forms part of the message

returned by P to U . P sends back {Credit=(gr · hm mod p,

EK(r,m)), σsk(Credit), r, m, wit}, where σsk(Credit)
is a signature on the credit under the signing key sk. Note

that the encryption of (r,m) is also included in the credit

as this is can be decrypted later by P to know the value

of the credit. U runs the CheckCredit (c,m) = Open(c, r,

m), which verifies if grhm mod p equals the first part of

the Credit, and verifies the signature on the credit using P’s

public key pk. U updates the witnesses for all existing cred-

its by running AccWitUpdate and stores the credit along

with its witness for future transactions.

3) SPEND (U , M, CREDITS): WhenU wants to spend

in-app, it initiates the SPEND transaction by sending its id,

M’s id and the transaction number/nonce (received from

M) along with a set of credits with respective witnesses

to P . P retrieves r and m for each credit by decrypting

EK(r,m) and checks if grhm mod p indeed equals the first

part of the credit. It also verifies its own signature on the

credit. It calls AccVerify (grhm mod p,wit) to check if the

credit is in the accumulator of that user. If all these checks

are passed, P removes the credits from U ’s accumulator and

adds it toM’s accumulator using the AccAdd function. It

sends back witness updates for both U andM along with a

signed acknowledgment of the success of the transaction. U
updates witnesses for all of its credits using AccWitUpdate

and also forwardsM’s witnesses to the latter.

4) ENCASH (M, CREDITS): Whenever M wants to

encash the credits she has earned through various users,

she can send these CREDITS in the ENCASH transaction

along with their respective witnesses. Note, M can send

at most 2k − 1 CREDITS at a time, to prevent overflow

when these CREDITS are multiplied later. P retrieves r

and m for each credit by decrypting EK(r,m) and checks

if grhm mod p indeed equals the first part of the credit. It

also verifies its own signature on the credit. It calls Ac-

cVerify (grhm mod p,wit) to check if the credit is inM’s

accumulator. If all the checks are passed, it removes the

CREDITS from theM’s accumulator using AccAdd func-

tion, computes R = Σr and M = Σm of the presented

credits and returns the witness update along with money

worth (1 − PROFIT) ∗ M to the M. M checks that the

product of the submitted credits i.e. Πgrhm mod p equals

gRhM mod p.

4 Properties

In this section, we formally define our security properties

as a game between a benign challenger and a malicious ad-

versary (see [33]). We model the adversary and challenger

as probabilistic processes that are allowed to communicate

with each other, creating a probability space for the attack-

game. Associated with each game is a security parameter

which affects this probability space. For every ”efficient”

adversary (a probabilistic polynomial time algorithm), the

probability that the adversary succeeds in winning the game

should be negligible. Note that the protocol also uses sig-

natures for non-repudiation, and since this is standard, we

do not include it in the games. As noted in Sect 2, we as-

sume that no parties collude in the system. Thus, each of

our security games assumes one party is the challenger, and

the other the adversary, while the third party is neutral. The

properties are defined in Section 4.1. We present proofs and

how can use these properties to achieve our global invari-

ants in Sect 4.2.

4.1 Property Definitions

1) User transparency: For this game, the challenger is the

user U and the adversary is the platform P . P should not be

able to claim different values for the credits once they are

committed at the time of purchase.

• The challenger U initiates PURCHASE (U , 1)

• The adversary creates a single credit ci which includes

the commitment, the nominal value mi and its com-

mitment key, and sends ci to the challenger. The chal-

lenger runs CheckCredit (ci,mi) and accepts only if

its output is true.

The adversary wins the attack-game if P can produce an-

other m′

i 6= mi and CheckCredit (ci,m
′

i) is true.

2) Merchant transparency: For this game, the challenger

isM and the adversary is P . The idea is that the platform

cannot cheat merchants when credits are encashed.

• The challenger initiates an ENCASH (M, CREDITS)

transaction by presenting credits (ck) along with their

corresponding accummulator witnesses wk.

• The adversary sends (M,R) in response to the chal-

lenger.

• The challenger computes Aggregate (ck) (product

of credits in our protocol) and Commit (M,R) and

checks if Aggregate (ck) = Commit (M,R)

The adversary wins the attack game if Commit (M,R) =

Aggregate (ck) and M 6= Σmk.

3) User fairness: For this game the challenger is U and

the attacker isM. We assume that P is not malicious. The

idea is that the merchant cannot distinguish between differ-

ent valued (say paid and free) credits.

• The challenger picks r from {0, 1} uniformly at ran-

dom and sends credit cr to the adversary. Previously,

the challenger has initiated PURCHASE (U ,1), to obtain

c0 and c1 with nominal values m0 and m1 respectively

from P .

• The adversary returns r′ ∈ 0, 1

The adversary wins the attack-game ifM can correctly re-

turn r′ = r with probability non-negligibly higher than 1
2

.

4) Double spending prevention: For this game the chal-

lenger is P and the attacker is U . M is only an ob-

server, and has a natural incentive to be honest, as dou-

ble spending by U will impact M’s profit directly. The

idea is that the user cannot spend a used credit at any mer-

chant more than once. The adversary purchases n credits

C = {(c1,m1), · · · , (cn,mn)} and obtains the appropriate

witnesses wi.

• The adversary initiates a SPEND (U ,M, C1) of C1 ⊂ C
consisting of l < n credits by sending the correspond-

ing witnesses

• The challenger retrieves the mis corresponding to the

credits in C1, and calls AccVerify(mi, wi) on the cor-

responding witnesses and updates these witness values

and communicates it to bothM and U

• The adversary initiates another SPEND (U ,M, C2) of

C2 ⊂ C consisting of m < n credits and (C)1∩(C)2 6=
φ, by sending the corresponding (updated) witnesses

The adversary wins the attack-game if upon retrieving the

corresponding mjs, j ∈ C2, AccVerify(mj , wj) succeeds.

5) Double encashment prevention: For this game the ad-

versary is M and the challenger is P . Users are not in-

volved in encash. The idea is that the merchant cannot en-

cash the same credit twice. We assume that the adversary

has n credits C = {(c1), · · · , (cn)} and obtains the appro-

priate witnesses wi.

• The adversary initiates an ENCASH (M, C1) of C1 ⊂ C
consisting of l < n credits by sending the correspond-

ing witnesses

• The challenger retrieves the mis corresponding to the

credits in C1, calls AccVerify(mi, wi) for 1 ≤ i ≤
l on the corresponding witnesses, and updates these

witness values and communicates it toM

• The adversary initiates another ENCASH (U ,M, C2) of

C2 ⊂ C consisting of m < n credits and (C)1∩(C)2 6=
φ, by sending the corresponding (updated) witnesses

The adversary wins the attack-game if upon retrieving the

corresponding mjs, j ∈ C2, AccVerify(mj , wj) succeeds.

4.2 Analysis

We show how these properties are achieved in our instan-

tiation, and describe what cryptographic hard-problems are

needed for their security.

1) User transparency: We will show that the probability

of the adversary U winning this game is negligible in the

security parameter. The security parameter here is defined

in terms of the number of bits needed to represent the com-

mitments ci, i.e., the number of elements n of a group G

of cyclic order with generators g, h. We will use the dis-

crete logarithm (DL) problem in G for a given h ∈ G, com-

pute r ∈ Zn such that h = gr. The DL assumption is a

computational hardness assumption: Given G, for all PPT

algorithms A, Pr[A(h) = logg h] is negligible.

From our definition of the User transparency game,

Pr[Adv wins] = Pr[CheckCredit(ci,mi) = 1 ∧
CheckCredit(ci,m

′

i) = 1 ∧mi 6= m
′

i].
Thus, in our protocol,

Pr[Adv wins] = Pr[ci = grihmi ∧ ci = gr
′

ihm
′

i

∧mi 6= m
′

i]

= Pr[grihmi = gr
′

ihm
′

i ∧mi 6= m
′

i]

For given mi,m
′

i(6= mi) and ri, coming up with r
′

i that

satisfies the above relation is equivalent to finding the dis-

crete logarithm (DL) of grihmi−m
′

i with respect to gener-

ator g, which can happen with only negligible probability

(DL assumption).

2) From our definition of the merchant transparency

attack-game, Pr[Adv wins] = Pr[Commit(M,R)] =
Aggregate(ck) ∧M 6= Σmk].

Pr[Adv wins] = Pr[Commit(M,R) =

Aggregate(ck) ∧M 6= Σmk]

= Pr[gRhM mod p =

Πgrhmk mod p ∧M 6= Σmk]

From the homomorphic property of Pedersens commit-

ments, we know that Commit(Σmk) = ΠCommit(mk),
so the adversary has to find a R equal to the discrete log of

gΣrhΣmk−M . Finding such a R is equivalent to solving the

DL problem. The DL Assumption asserts that the probabil-

ity of this is negligible.

3) From our definition of the user fairness attack-game

Pr[Adv wins] = Pr[r′ = r]. Now r is picked by the

challenger uniformly at random, and causes the adversary

to obtain either c0 = gr1h
m0 mod p or c1 = gr2h

m1 mod p.

Since, the values c0 and c1 are information-theoretically in-

distinguishable from random numbers (hiding property of

Pedersen’s commitment), the adversary cannot guess r with

probability better than random chance.

4) Since in the double spending attack-game, (C)1 ∩
(C)2 6= φ, let us focus on one credit ck in (C)1 ∩ (C)2.

When this credit is presented in the SPEND transaction (as

part of (C)1), the challenger removes ck from the accumula-

tor and sends an update for the adversary’s witnesses. Now,

since credits get added only once to the accumulator us-

ing the PURCHASE transaction, there is only a negligible

probability that the adversary can produce a witness for ck
when presenting it again in the SPEND transaction (as part

of (C)2). This follows from the fact that security of our

accumulator scheme, which is equivalent to solving the q-

strong Diffie-Hellman problem.

5) From our definition of the double encashment attack-

game, the probability that the adversary wins depends on

the same property as the double spending, and the analysis

follows from 4) with the ENCASH instead of SPEND calling

AccVerify under the same conditions.

Note that all transactions have a built in authentication

and non-repudiation properties (using encryption and digi-

tal signatures). We summarize our properties and the cryp-

tographic assumptions required for ready reference below

1. Transparency: User transparency follows from the

binding property of Pedersen’s commitment (based on

the Discrete-Log assumption). Merchant transparency

follows from the binding property and the homomor-

phic property of Pedersen commitments.

2. User Fairness follows from the hiding property

(information-theoretic, no assumption) of Pedersen

commitments

3. Double spending and Double encashment protec-

tion ensue from the Accumulator scheme (Decisional

Diffie Hellman and q-Strong Diffie Hellman assump-

tions)

Global Properties: It is easy to see that Verito system

guarantees global transparency, as the value of the credits in

PURCHASE, SPEND and ENCASH transactions can be ver-

ified by the interested parties as soon the transaction com-

pletes by the concerned parties. Note that ENCASH is ac-

companied by a privacy policy that may not allow certain

kinds of transactions, but if a transaction completes that ad-

heres to this policy, the guarantee is still valid. Since the

property is true for every transaction, it is true globally.

Let all users verify all their PURCHASE transactions by

checking if the product of their credits equals the opened

value of their sum revealed by P , and no credits are dupli-

cated when a user spends them with Ms. Further all Ms

verify each ENCASH, assuming the privacy policy allows

them. Arbitrage is not an issue as different currencies are

not allowed to mix (by credit design).

Now let us examine the Fairness property. As long as the

M can only see the aggregate value of the tokens presented,

and cannot game the system (because of the privacy policy)

to infer values of individual tokens,M cannot discriminate

between credits with different nominal values.

Non-repudiation, i.e., both double-spending and double-

encashment are prevented by the white-list accumulator

scheme.

Scalability is achieved through the use of fixed-size ac-

cumulators (sza), fixed-size credits (szc), fixed-size wit-

nesses (szw), and fixed-size witness updates (szwu). The

storage at P is O (1) for each user and merchant, and in-

dependent of the number of credits they possess. The re-

sponse to the PURCHASE transaction for n credits is of size

n(szc + szw) + szwu) which is O (n) in the credits pur-

chased, and independent of the total number of credits the

user already has. The messages in the SPEND and ENCASH

transaction for n credits are similarly O (n) and indepen-

dent of the total number of credits the user or the merchant

have.

5 Implementation

Our implementation of Verito comprises of the following

components: Interfaces forP ,M and U , a credit generation

module using Pedersen’s commitment scheme, a double-

spending prevention module using dynamic accumulators

from [28] and an example game which allows for in-game

purchases. P exposes its functionality over HTTP, and can

therefore interact with programs written in any language,

including browser-based applications.

The commitment part of our P implementation consists

of 760 lines of C code. The accumulator part consists of

an additional 130 lines of C++ code. Our example M
component consists of 470 lines of C, and U component

consists of 130 lines of HTML and Javascript. We use

the libevent library [25] for all HTTP communication. We

use the NTL library [29] for performing modular arithmetic

with k = 1024 unless otherwise specified, and an in-house

library for pairing-based operations. The example game in-

cluding both theM and U components was created in under

six hours by a single person demonstrating the ease of pro-

gramming to the P webservice API.

5.1 Optimizations

While our commitment module, and most of the accumu-

lator module could perform at high-speed, one accumulator

operation (AccVerify) was the performance bottleneck. We

design an optimization that avoids this bottleneck in most

cases.

We cache the last l credits added to an accumulator.

Credits are removed from the cache either when they are

deleted from the accumulator (AccUpdate), or evicted

(e.g., in FIFO order) when cache size exceeds k. As a re-

sult, if a credit exists in the cache, it is guaranteed to exist in

the accumulator (i.e., AccVerify is guaranteed to succeed).

If, however, a credit does not exist in the cache, AccVerify

must be executed to check if the credit exists in the accu-

mulator. The optimization, thus, skips AccVerify when the

credit exists in the cache. Note that generating the witness

update (after deleting a credit from the accumulator) is not

impacted by skipping AccVerify when the credit is guaran-

teed to exist in the accumulator.

Picking l and the eviction policy to maximize the cache-

hit rate depends on the application, and is best arrived at

during performance tests, and we do not prescribe a fixed

value in this paper.

5.2 Putting it Together

Figure 3 demonstrates through screenshots our proof-of-

concept in-game purchase scenario, and how Verito can de-

tect an accounting anomaly we deliberately injected into P .

Figures 3a and 3b show an in-game shopping menu, and

the user’s in-game credits account where the user can pur-

chase credits by paying actual money, or redeem a promo-

tional coupon (modeled along Facebook’s credit system as

(a) (b)

(c) (d)

(e) (f)

Figure 3. a,b: U purchases ingame items.

c,d:M encashes credits. e,f: Bug in P results

in incorrect payout. M catches the problem.

discussed earlier). In our test, the user redeems a coupon

for 10cr, and purchases 10cr for $1. Once the user buys

the Tractor, M’s console (Figure 3c) shows the credits re-

ceived from the user. WhenM chooses to encash his cred-

its, the verification succeeds (Figure 3d) showing the value

of the encashed credits as $1. Next, we enable an account-

ing anomaly in P (Figure 3e) where P siphons off $1 from

the payout. We re-run the test, but let the user buy all 20cr

by paying $2. The (anomalous) payout is therefore $1 in-

stead of $2; this duplicates the previous scenario where P
offers to payout $1 for the 20cr encashed.M can, however,

detect the accounting anomaly since the verification fails as

shown in Figure 3f.

6 Performance Evaluation

We evaluate Verito performance using macro-

benchmarks, and perform a feasibility analysis based

on transaction volumes we acquired from a large gam-

 500

 600

 700

 800

 900

 1000

 1 10 100 1000

C
re

d
it
s
 P

u
rc

h
a
s
e
d
 (

p
e
r

s
e
c
o
n
d
)

Batch size

(a) PURCHASE

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 1 10 100 1000

C
re

d
it
s
 E

n
c
a
s
h
e
d
 (

p
e
r

s
e
c
o
n
d
)

Batch size

(b) ENCASH

Figure 4. Performance macrobenchmark

ing company. Macro-benchmarks test the end-to-end

aspects of our implementation, including not only the

underlying cryptography performance, but also overheads

associated with processing HTTP requests, and serializing

and deserializing credits. All experiments are run on a

typical workstation-class machine with an Intel Core2 Duo

processor running at 2 GHz with 4 GB memory.

6.1 MacroBenchmarks

We benchmark the performance of our P implementa-

tion (with the cache-based optimization) by measuring end-

to-end latency of each of the operations it participates in.

The measured latency includes HTTP overheads, however,

we exclude network bandwidth and latency related over-

heads by using the loopback network interface. We restrict

the P to only one core of the dual-core machine, and use

the second core for the benchmarking process.

Purchase. Figure 4a plots the performance of PUR-

CHASE transactions as a function of the size of the batches

Operation (single-thread) Time

PURCHASE

P: Accumulator Add 0.14 ms

U : Witness Update 3.12 ms

SPEND

P: Accumulator Verify worst-case 156 ms

P: Accumulator Verify best-case* <0.1 ms

P: Accumulator Update × 2 0.28 ms

U : Witness Update 3.12 ms

M: Witness Update 3.12 ms

ENCASH

P: Accumulator Verify worst-case 156 ms

P: Accumulator Verify best-case* <0.1 ms

P: Accumulator Update 0.14 ms

M: Witness Update 3.12 ms

*Cache-based optimization

Table 1. Accumulators microbenchmark

in which credits are purchased. Since the end-to-end la-

tency includes a fixed communication overhead and vari-

able cryptography cost, the larger the batch-size, the more

credits the network overhead is amortized over, and there-

fore the higher the performance. That said, cryptographic

cost clearly dominates network overhead as performance

holds steady at around 830 credits per second with minimal

improvement from batching. Each datapoint is the average

per-second throughput computed for a benchmark-run last-

ing 15 seconds.

Spend/Encash. Figure 4b plots the performance of EN-

CASH transactions as a function of batch-size. The im-

pact of batching is far more dramatic since the fixed over-

heads dominate. Encashing credits in batches of around 100

yields the best performance for our implementation. Net-

work overheads dominate below this threshold. Above this

threshold memory-related overheads (i.e., holding larger re-

quests and responses in memory). While we believe we

can optimize our implementation to maintain peak perfor-

mance for larger batches, there is little reason to, consid-

ering ENCASH performance already outstrips PURCHASE

performance by two orders of magnitude.

The performance of the validation step in the SPEND

transaction (to guard against invalid credits and double-

spent credits) is identical to ENCASH performance, and in-

deed uses identical code. The only difference is that EN-

CASH in addition generates the correctness proof (for open-

ing commitments). Generating the proof adds negligible

overheads since it involves only product operations on large

numbers (and no modular exponentiations).

6.2 MicroBenchmarks

We benchmark our accumulator performance in Table 1.

PURCHASE transactions require very little processing at P
(0.14 ms). U must apply the witness update to all witnesses

he has, however, this operation does not need to be syn-

chronous. The witnesses can be updated lazily at any time

before the credit is spent. Each witness update operation

takes 3.12 ms on a typical laptop (single-threaded), which

can be trivially parallelized. Thus thousands of credits can

be updated in just a few seconds.

As mentioned, the dominant performance cost comes

from the unoptimized verify operation in the SPEND and

ENCASH transactions. By using our cache-based optimiza-

tion, and tuning the cache size for best performance, we

can reduce the verification cost to practically nothing (<

0.1 ms) for almost all requests. As before, witness updates

can be performed lazily in parallel.

6.3 Feasibility Study

To estimate feasibility, we approached a large online-

gaming platform for transaction volume data; the online-

platform in question transacts several hundreds of millions

of dollars each year. Given the exchange rate between $1

and credits in the platform, and the platform’s growth target

over the next few years, a rough target for Verito would be

to generate on the order of 100 billion credits in a year.

Our P implementation can generate 71 million credits

per day (26 billion per year) on a single-core. Thus a single

quad-core workstation we estimate can serve the demands

of the real-world gaming platform we approached.

Overall we believe Verito is both practical (in terms

of performance) and significantly raises the functionality

bar (in terms of adding transparency and accountability) to

Internet-scale gaming platforms.

7 Discussion

The biggest concern with Verito is how to incentivise

adoption. It is true that in the current climate, Facebook

or Xbox (perhaps) have little reason to give up transparency

of their economies. We envision two complementary ap-

proaches that can drive Verito adoption.

Verito overlay. Verito can run as an overlay on top of an

existing economy (e.g., Facebook credits). The user installs

a browser extension that modifies the existing Facebook

UI, say, to add the option of purchasing “verified credits”,

which are processed by a Verito platform that runs indepen-

dently from Facebook. Game developers allow users to pay

using regular Facebook credits, or using “verified credits”.

The independent Verito platform, which may be run by a

startup, makes a commission per-transaction like Facebook

does. Game developers don’t get any guarantees for regu-

lar credits, but for the fraction of their income coming from

“verified credits”, they have strong guarantees.

Regulation. While virtual economies have, so far, es-

caped regulation, the same reasons for regulating banks ap-

plies to virtual economies — i.e., protecting customers. If

today a user were to buy $100 in Facebook or Xbox cred-

its, he would not have any legal recourse if due to a bug

or a breach Facebook or Xbox were to lose these credits.

Regulators could encourage (or force) virtual economies

to be transparent to protect consumers. Verito presents a

proof-of-concept of how it is technologically feasible to add

transparency while balancing competing interests and con-

straints that naturally arise in these virtual economies.

8 Related Work

The past decade has seen a growing interest in research

revolving around virtual economies, what drives them [24],

their legal implications [26], etc. (See [9] for an extensive

bibliography). However, there has been very little work on

the design and implementation of these virtual economies.

Nevertheless, token (or credit) based virtual economy sys-

tems exist around the world: Xbox Live Marketplace uses

Microsoft Points as the currency to purchase games and

other online services without repetitive use of credit cards

or banking accounts [7]; Facebook Credits is a system that

enables users to buy digital and virtual goods in games

and apps across Facebook [3]; Octopus Card (a contactless

stored-value card) was originally introduced to collect fares

in the Hong Kong Mass Transit Railway (MTR) system, and

it is now a widely used payment system in supermarkets,

fast-food restaurants, car parks, etc. [8]; and in Second Life,

the virtual economy of Linden Dollars allows users to make

in-game purchases to acquire virtual goods and services [2].

Microsoft Points, Octopus Cards and Linden Dollars are

transparent systems, in that the nominal value associated

with a spent credit is clearly known to the player encashing

it for real money. However, these systems offer very little

flexibility with respect to accommodating multiple nominal

values (whether for pricing differently in different geogra-

phies or for offering promotions/discounts to encourage ac-

tive user-participation in the virtual economy, etc.). On the

other hand, the Facebook Credits system admits a flexible

pricing of credits, but does not provide transparency – game

developers cannot independently verify the correctness of

the amount of money received from Facebook in-return for

the spent credits. Facebook may be able to trivially offer

a transparent payout summary, but that would compromise

the privacy of users (exposing users to the risk of preferen-

tial/unequal treatment by game developers). Moreover, the

differentials in credit nominal values may be exploited by

game developers masquerading as users, raising the possi-

bility of arbitrage.

Recently, a token-based scheme for privacy-preserving

toll collection was proposed in [12,27]. Their focus was on

preserving privacy of user-locations during automatic toll

collection. While their scheme uses similar primitives as

ours, such as homomorphic commitment schemes, their ar-

chitecture does not quite adapt to the virtual economy set-

tings we consider, with multiple nominal values for credits.

Electronic cash (e-cash) systems [18] also have an ar-

chitecture similar to our system in terms of the kinds of

players and transactions. The three players in an e-cash

system are: the Bank, customers and merchants, while the

three main transactions are Withdraw, Payment and De-

posit. Even some of the desired security properties are

similar: Unforgeability of digital cash and over-spending

(sometimes called double spending) prevention. The key

differences are the requirements of anonymity of users (no

one should be able to infer the identity of the user by view-

ing the e-cash tokens) and unlinkabilty of user transactions

(no one should be able to infer that two payment transac-

tions are with the same user). Because of these privacy

requirements, e-cash systems tend to rely on stronger and

less efficient cryptographic techniques. There are also two

desirable properties in our system which are often absent

in e-cash systems: flexibility (multiple-valued credits) and

non-repudiation. While we support multiple nominal values

for virtual credits in Verito, we also provide non-repudiation

as a security property.

Finally, we also present references for homomorphic

commitment schemes and dynamic accumulators: Only

a few direct constructions of homomorphic commitments

are known [20, 32]. Many other constructions can be de-

rived from homomorphic encryption schemes [22, 30, 31],

but [32] continues to remain one of the most efficient and

widely used commitment schemes. Several other commit-

ment schemes [21, 23] have been derived from it to achieve

some additional properties. In terms related work for of

dynamic accumulators, they were first introduced in Ca-

menisch et al. [17], and many schemes have been pro-

posed [13, 15]. The dynamic accumulator scheme used is

this work is a modification [11] of the scheme presented by

Nguyen [28] and we picked the scheme for its efficiency.

9 Summary and Future Work

In this paper we argue that the accountable virtual econ-

omy problem is very relevant to the industry today. Cred-

its, which constitute the currency in virtual economies, may

be associated with multiple nominal values, depending on

the geographic region where they are sold, or depending

on whether the credits are paid-for or offered free as part

of a promotion, etc. Currently it is not possible for users

and content-creators to audit the accounting practices of

platform-providers, i.e., they cannot validate the value of

credits spent on the platform without resorting to legal pro-

cedures (as in the case of a dispute). In addition to scala-

bility as a performance requirement, we identify three de-

sirable security properties viz., transparency, fairness and

non-repudiation, which are currently enforced by simply

trusting the platform provider. Using well-established cryp-

tographic primitives such as commitment schemes and dy-

namic accumulators, we develop a framework that satisfies

these security properties, and is efficient and scalable to a

large number of users, credits and transactions.

From the adoption angle, a shortcoming of our approach

is that it requires explicit cooperation from existing plat-

forms. While one can imagine regulatory pressure to extract

this cooperation, a better solution would be one that lever-

ages existing platforms without major modifications. To ad-

dress this, we propose a web-proxy based overlay solution

that can be incrementally deployed. We hope this paper will

spark further research within the community to explore all

aspects of this important problem.

References

[1] Bitcoin: A peer-to-peer electronic cash system.

http://bitcoin.org/.

[2] Economy of second life.

[3] Facebook credits. http://developers.facebook.com/docs/cre

dits/.

[4] Facebook credits for developers.

https://www.facebook.com/help/?page=199374706772290.

[5] Facebook Inc. Form S1.

http://www.sec.gov/Archives/edgar/data/1326801/0001193

12512175673/d287954ds1a.htm.

[6] Inside virtual goods the us virtual goods market 2011 - 2012.

http://www.insidevirtualgoods.com/us-virtual-goods/.

[7] Microsoft points. http://www.xbox.com/en-

US/Live/MicrosoftPoints.

[8] Octpus card. http://en.wikipedia.org/wiki/Octopus card.

[9] Virtual economy research network bibliography.

http://virtual-economy.org/biblio.

[10] M. Abe, R. Cramer, and S. Fehr. Non-interactive distributed-

verifier proofs and proving relations among commitments.

In Proceedings of the 8th International Conference on the

Theory and Application of Cryptology and Information Se-

curity: Advances in Cryptology, ASIACRYPT ’02, pages

206–223, London, UK, UK, 2002. Springer-Verlag.

[11] M. Au, P. Tsang, W. Susilo, and Y. Mu. Dynamic uni-

versal accumulators for ddh groups and their application to

attribute-based anonymous credential systems. In M. Fis-

chlin, editor, Topics in Cryptology – CT-RSA 2009, volume

5473 of Lecture Notes in Computer Science, pages 295–308.

Springer Berlin / Heidelberg, 2009.

[12] J. Balasch, A. Rial, C. Troncoso, B. Preneel, I. Ver-

bauwhede, and C. Geuens. PrETP: Privacy-preserving elec-

tronic toll pricing. In USENIX Security ’10, 2010.

[13] N. Barić and B. Pfitzmann. Collision-free accumulators and

fail-stop signature schemes without trees. In W. Fumy, ed-

itor, Advances in Cryptology (EUROCRYPT ’97), volume

1233 of Lecture Notes in Computer Science, pages 480–494.

Springer Berlin / Heidelberg, 1997.
[14] M. W. Bell. Virtual Worlds Research: Past, Present & Fu-

ture. Journal of Virtual Worls Research, 1(1), July 2008.
[15] J. Benaloh and M. de Mare. One-way accumulators: A de-

centralized alternative to digital signatures. In T. Helleseth,

editor, Advances in Cryptology (EUROCRYPT ’93), volume

765 of Lecture Notes in Computer Science, pages 274–285.

Springer Berlin / Heidelberg, 1994.
[16] J. Camenisch and A. Lysyanskaya. Dynamic accumulators

and application to efficient revocation of anonymous creden-

tials. In M. Yung, editor, Advances in Cryptology (CRYPTO

2002), volume 2442 of Lecture Notes in Computer Science,

pages 101–120. Springer Berlin / Heidelberg, 2002.
[17] J. Camenisch and A. Lysyanskaya. Dynamic accumulators

and applications to efficient revocation of anonymous cre-

dentials. Advances in Cryptology (Crypto’02), 2442:61–76,

2002.
[18] D. Chaum. Blind signatures for untraceable payments. In

CRYPTO, pages 199–203, 1982.
[19] D. Chaum, J.-H. Evertse, and J. Van De Graaf. An improved

protocol for demonstrating possession of discrete logarithms

and some generalizations. In Proceedings of the 6th an-

nual international conference on Theory and application

of cryptographic techniques, EUROCRYPT’87, pages 127–

141, Berlin, Heidelberg, 1988. Springer-Verlag.
[20] R. Cramer and I. B. Damgard. Zero-knowledge proofs for fi-

nite field arithmetic, or: Can zero-knowledge be for free? In

IN PROC. CRYPTO, pages 424–441. Springer-Verlag, 1997.
[21] I. Damgard and E. Fujisaki. A statistically-hiding integer

commitment scheme based on groups with hidden order. In

Proceedings of the 8th International Conference on the The-

ory and Application of Cryptology and Information Secu-

rity: Advances in Cryptology, ASIACRYPT ’02, pages 125–

142, London, UK, UK, 2002. Springer-Verlag.
[22] T. El Gamal. A public key cryptosystem and a signature

scheme based on discrete logarithms. In Proceedings of

CRYPTO 84 on Advances in cryptology, pages 10–18, New

York, NY, USA, 1985. Springer-Verlag New York, Inc.
[23] E. Fujisaki and T. Okamoto. Statistical zero knowledge pro-

tocols to prove modular polynomial relations. In Proceed-

ings of the 17th Annual International Cryptology Confer-

ence on Advances in Cryptology, pages 16–30, London, UK,

1997. Springer-Verlag.
[24] Y. Guo and S. Barnes. Virtual item purchase behavior in vir-

tual worlds: an exploratory investigation. Electronic Com-

merce Research, 9(1–2):97–113, 2009.
[25] LibEvent. http://monkey.org/ provos/libevent/.
[26] H. Lin and S. C-T. Cash trade within the magic circle: Free-

to-play game challenges and massively multiplayer online

game player responses. In Proceedings of DiGRA 2007: Sit-

uated Play, 2007.
[27] S. Meiklejohn, K. Mowery, S. Checkoway, and H. Shacham.

The phantom tollbooth: privacy-preserving electronic toll

collection in the presence of driver collusion. In Proceed-

ings of the 20th USENIX conference on Security, SEC’11,

pages 32–32, Berkeley, CA, USA, 2011. USENIX Associa-

tion.
[28] L. Nguyen. Accumulators from bilinear pairings and appli-

cations. In Proceedings of CT-RSA ’05, 2005.
[29] NTL: A Library for doing Number Theory.

http://www.shoup.net/ntl/.
[30] T. Okamoto and S. Uchiyama. A new public-key cryptosys-

tem as secure as factoring. In K. Nyberg, editor, Advances

in Cryptology — EUROCRYPT’98, volume 1403 of Lecture

Notes in Computer Science, pages 308–318. Springer Berlin

/ Heidelberg, 1998. 10.1007/BFb0054135.
[31] P. Paillier. Public-key cryptosystems based on composite

degree residuosity classes. In Proceedings of the 17th in-

ternational conference on Theory and application of cryp-

tographic techniques, EUROCRYPT’99, pages 223–238,

Berlin, Heidelberg, 1999. Springer-Verlag.
[32] T. P. Pedersen. Non-interactive and information-theoretic

secure verifiable secret sharing. In Proceedings of the 11th

Annual International Cryptology Conference on Advances

in Cryptology, CRYPTO ’91, pages 129–140, London, UK,

1992. Springer-Verlag.
[33] V. Shoup. Sequences of games: a tool for taming complexity

in security proofs. Cryptography ePrint Archive 2004/32,

2004.

	Introduction
	Accountable Virtual Economy
	Players
	Transactions
	Properties

	Verito
	Preliminaries
	Commitment scheme
	Dynamic Accumulators

	Verito Protocol
	Concrete Instantiation

	Properties
	Property Definitions
	Analysis

	Implementation
	Optimizations
	Putting it Together

	Performance Evaluation
	Macro-Benchmarks
	Micro-Benchmarks
	Feasibility Study

	Discussion
	Related Work
	Summary and Future Work

