Serving Ads from localhost for Performance, Privacy, and Profit

Saikat Guha², Bin Cheng¹, Paul Francis¹

¹ Max Planck Institute for Software Systems ² Microsoft Research India

NSDI 2011

Death Taxes Advertising

Guha, Cheng, Francis Privad: Privacy-Preserving Advertising

Annoying

- Quality sucks
- So they push quantity, obtrusiveness
- ► Slow
 - Multiple round-trips to distant ad server
 - Stalls webpage rendering
- Invade Privacy
 - Google/Doubleclick sees every website we visit
 - Disgruntled employee in league with insurance company...game over.

Annoying

- Quality sucks
- So they push quantity, obtrusiveness
- ► Slow
 - Multiple round-trips to distant ad server
 - Stalls webpage rendering
- Invade Privacy
 - Google/Doubleclick sees every website we visit
 - Disgruntled employee in league with insurance company...game over.

User

Annoying

- Quality sucks
- So they push quantity, obtrusiveness
- ► Slow
 - Multiple round-trips to distant ad server
 - Stalls webpage rendering
- Invade Privacy
 - Google/Doubleclick sees every website we visit
 - Disgruntled employee in league with insurance company...game over.

- 1. Clean Dirty slate
 - Supports today's advertising model
- 2. Private enough
 - To convince privacy-advocates and governments
- 3. Deeply user-centric targeting
 - Increased privacy begets better personalization
- 4. Scalable
 - ▶ yada yada yada

- 1. Clean Dirty slate
 - Supports today's advertising model
- 2. Private enough
 - To convince privacy-advocates and governments
- 3. Deeply user-centric targeting
 - Increased privacy begets better personalization
- 4. Scalable
 - ▶ yada yada yada

- 1. Clean Dirty slate
 - Supports today's advertising model
- 2. Private enough
 - To convince privacy-advocates and governments
- 3. Deeply user-centric targeting
 - Increased privacy begets better personalization
- 4. Scalable
 - ▶ yada yada yada

- 1. Clean Dirty slate
 - Supports today's advertising model
- 2. Private enough
 - To convince privacy-advocates and governments
- 3. Deeply user-centric targeting
 - Increased privacy begets better personalization
- 4. Scalable
 - ► yada yada yada

- Dealer learns client X clicked on some ad
- ► Broker learns someone clicked on ad Y
- At Broker, multiple clicks from same client appear as clicks from multiple clients

How Deep the Rabbit Hole Goes...

Core protocols

- User profiling
- Ad Dissemination
- Ad Auctions
- Reporting views/clicks
- Detecting Click-Fraud

Privacy

- Reference Monitor
- Privacy Analysis
- Anonymizing the Click
- Related Work

Deployability and Scalability

- Estimating Costs
- Deploying Privad
- Measurement data
- Optimizing Crypto
- Implementation and Microbenchmarks

Ongoing work

- Mobile Advertising
- Bait Ads
- Finding Correlations
- PL Privacy Guarantees

How Deep the Rabbit Hole Goes...

Core protocols

- User profiling
- Ad Dissemination
- Ad Auctions
- Reporting views/clicks
- Detecting Click-Fraud

Privacy

- Reference Monitor
- Privacy Analysis
- Anonymizing the Click
- Related Work

Deployability and Scalability

- Estimating Costs
- Deploying Privad
- Measurement data
- Optimizing Crypto
- Implementation and Microbenchmarks

Ongoing work

- Mobile Advertising
- Bait Ads
- Finding Correlations
- PL Privacy Guarantees

Status

Protocols defined

- Stable: Dissemination, Reporting, Reference Monitor, Crypto w/ optimizations
- May evolve: Auctions, Click-Fraud
- Implemented, pilot deployment
 - Firefox plugin. 2083 volunteer testers.
- Next steps
 - Real deployment (100K users) and measurements, research platform, ...
 - Engage privacy-advocates, brokers, regulators and policy makers

- Practical privacy-preserving online advertising
 - Significantly better privacy, no changes to ad models, scalable, potential for better targeting
- ► Full core system
 - Profiling, Dissemination, Auctions, Reporting, Click-Fraud, Scalability, Auditing, Deployment incentives
- Call to action
 - If you hate online ads, help fix it!
 - Lots of interesting research directions (and low-hanging fruit!)

Questions?

Core protocols

- ► User profiling ► 📭
- Ad Auctions
- Reporting views/clicks . .

Privacy

- Reference Monitor Pro
- Anonymizing the Click . . Pso
- Related Work

Deployability and Scalability

Ongoing work

Mobile Advertising • 50
 Bait Ads • 50
 Finding Correlations • 50
 PL Privacy Guarantees .. • 50

- Broker doesn't learn anything about client
- Simplest: Flood all ads to all clients
 - ► Won't work. Easily 2+ GB per month, probably much more. Based on Google Ads study ♥ 50.
- We propose privacy-preserving Pub-Sub

Ad Dissem: Privacy-preserving Pub-Sub

- Define categories of ads
 - Amazon defines over 100K of these, e.g.
 electronics.camera+photo.panasonic.camcorders.accessories.memory+media.media.minidv
 - Actual number is scalability-privacy tradeoff
- Client subscribes to channels (through Dealer)
 - Channel is ad category plus broad demographics
 e.g. gender, location, language
- Broker publishes ads (through Dealer)
 - Ads nearing daily budget not published
 - Not all ads published match client because of sensitive demographics e.g. marital-status
 - Published ads expire after some time

Ad Dissem: Privacy-preserving Pub-Sub

- K unique to this subscription
- ► Dealer learns client X subscribed to *some* chan
- Broker learns <u>someone</u> subscribed to channel Y
- Broker cannot link multiple subscriptions from same client. (Otherwise can build up profile over time)

Questions?

Core protocols

- ► User profiling ► 📭
- Ad Auctions
- Reporting views/clicks . . Pso

Privacy

- Reference Monitor Pro
- Anonymizing the Click . . Pso
- Related Work

Deployability and Scalability

Ongoing work

Mobile Advertising • 50
 Bait Ads • 50
 Finding Correlations • 50
 PL Privacy Guarantees .. • 50

- Fair marketplace where advertisers influence frequency and position of ads through bids
- Preserve user privacy, and advertiser bid privacy
- Design-I: Simple Auction
- Design-II: Combined Auction
 - Identical to Google's GSP Auction today
- ► Will evolve as new approaches are added

Auctions: Simple Auction

- Coarse-grained but very simple
- Channel granularity. Bins ranked by global metrics. Ads in bins ranked by user metrics.
- No changes to protocols; no impact on privacy

Auctions: Combined Auction

- ▶ Identical to Google model. Incl. 2nd price.
- Fine-grained. Per user ads ranked by global and user metrics.
- ► Private for both user, and advertiser
Core protocols

- ► User profiling ► 📭
- Ad Auctions
- Reporting views/clicks . . Pso

Privacy

- Reference Monitor Pro
- Anonymizing the Click . . Pso
- Related Work

Deployability and Scalability

Ongoing work

Step 1: Convince privacy-advocates and antivirus-firms

 Not only "not bad", but in fact "good alternative"
 NOT for those:

- who don't see/click ads today
- use AdBlockers

For people who make Google \$20B every year.

\$\$\$\$ Installed by default with privacy-conscious browsers

Step 3: Convince or compel Google, or compete

- Better value, lower risk
- Or apply pressure through regulatory agencies

Deployability

Step 1: Convince privacy-advocates and antivirus-firms

- Not only "not bad", but in fact "good alternative" to privacy-compromising cloud-based advertising
- Ensure user experience not degraded in any way

Step 2: Multiple deployment vehicles

\$ Standalone, or bundle third-party software

Surprisingly tenable. Based on CoDeeN study <a>D.

\$\$ Or bundled with third-party software

\$\$\$\$ Installed by default with privacy-conscious browsers

Step 3: Convince or compel Google, or compete

Better value, lower risk

Or apply pressure through regulatory agencies

Deployability

Step 1: Convince privacy-advocates and antivirus-firms

- Not only "not bad", but in fact "good alternative" to privacy-compromising cloud-based advertising
- Ensure user experience not degraded in any way
- Step 2: Multiple deployment vehicles
 - \$ Standalone, or bundle third-party software
 - Surprisingly tenable. Based on CoDeeN study
 - **\$\$** Or bundled with third-party software
 - \$\$\$\$ Installed by default with privacy-conscious browsers
- Step 3: Convince or compel Google, or compete
 - Better value, lower risk
 - ► Or apply pressure through regulatory agencies

Deployability

Step 1: Convince privacy-advocates and antivirus-firms

- Not only "not bad", but in fact "good alternative" to privacy-compromising cloud-based advertising
- Ensure user experience not degraded in any way
- Step 2: Multiple deployment vehicles
 - \$ Standalone, or bundle third-party software
 - Surprisingly tenable. Based on CoDeeN study
 - \$\$ Or bundled with third-party software
 - \$\$\$\$ Installed by default with privacy-conscious browsers
- Step 3: Convince or compel Google, or compete
 - Better value, lower risk
 - Or apply pressure through regulatory agencies

Core protocols

- ► User profiling ► 📭
- Ad Auctions
- Reporting views/clicks . . Pso

Privacy

- Reference Monitor Pro
- Anonymizing the Click . . Pso
- Related Work

Deployability and Scalability

Ongoing work

Understanding Google Search Ads

- ► Sampled Google search ads for 1 month
- Every 30 minutes
- 1.3K random keywords (from 100K keyword dictionary)
- Geo-diverse vantage points

Understanding Google Search Ads

Ad Skew: 10% (generic) ads shown 80% of the time. Ad Churn: 30%–40% ads change hour-hour/day-day. 5%–10% replaced permanently.

Understanding Google Search Ads

Ad Skew: 10% (generic) ads shown 80% of the time. Ad Churn: 30%–40% ads change hour-hour/day-day. 5%–10% replaced permanently.

Design implications:

- Generic ads: may disseminate widely and cache.
- Rest cannot flood. Update traffic too high.

Understanding CoDeeN users

- CoDeeN click stream for 1 month
- ► Filtered bots using CoDeeN's bot detector
- ▶ 31K users; some bots still

Understanding CoDeeN users

Ad Block: Only 10–20%; tad low? Third-party Crap: 21%; surprisingly high?

		Ad		3rd-Party	Ad
	Users	Views	CTR	Toolbars	Blockers
China	7308	39K	0.5 %	22 %	12 %
Saudi Arabia	6710	56K	2.7 %	40 %	9 %
United States	1420	19K	0.9 %	13 %	17 %
U.A.E	1322	8K	1.7 %	35 %	8 %
Germany	956	5K	1.5 %	7 %	19 %
Worldwide	30987	189K	2.5 %	21 %	12 %

Understanding CoDeeN users

Ad Block: Only 10–20%; tad low? Third-party Crap: 21%; surprisingly high?

Deployment implications:

- Ad-supported business models still viable
- Many users will install anything, and forget? (if it isn't disruptive)
- Even for somewhat tech. savvy users; likely more so for typical users

Core protocols

- ► User profiling ► 📭
- Ad Auctions
- Reporting views/clicks . . Pso

Privacy

- Reference Monitor Pro
- Anonymizing the Click . . Pso
- Related Work

Deployability and Scalability

Ongoing work

Multiple complementary approaches

- Crawling: Broker maps website-keywords. Client queries anonymously.
 - Identical to today (but private)
 - Sophisticated classifiers
 - Not for sites with user login. Or desktop apps.
- Scraping: Client scrapes websites
 - Simple classifiers
 - May be combined with anonymized access to sophisticated classifiers
 - Works for sites with user login. And desktop apps.

- Metadata: Website embeds keywords in webpage served.
 - Incentivise by offering part of ad revenue
 - Client tracks and sends in report which websites contributed profile info that led to click. (different from website showing adbox)
- User/Social Feedback: Direct user feedback (+/-) on ads. Client may also affect clients of OSN friends.
- Mobile Phones: Camera, Mic, GPS.
 Accleration, pressure and temperature sensors.

Core protocols

- ► User profiling ► 📭
- Ad Auctions
- Reporting views/clicks . . Pso

Privacy

- Reference Monitor Pro
- Anonymizing the Click . . Pso
- Related Work

Deployability and Scalability

Ongoing work

- ► Client is untrusted. Protocol is public.
 - Much like today (browser, HTTP)
- ► No silver bullet. Constant arms race.
- ► Basic approach: Defense in depth
 - Lots of overlapping detection mechanisms
 - Each requires time and effort to circumvent
 - Together raise the bar considerably
- ► Will evolve as new approaches are added

Detecting Click-Fraud

- Thresholds: Dealer flags clients with abnormally high number of subscriptions, views, clicks, or click-through ratio.
 - Forces attacker to use botnet
 - Cannot use same botnet for multiple attacks
- Blacklists: Dealers use lists of known bots (from antivirus or network telescope). Dealers share list of banned clients.
 - Limits window of time a bot is useful.
- Honeyfarms: Broker operates honeyfarm susceptible to botnet infections.
- Honeyfarm detection armsrace. Advantage Broker.
 Premium Clicks: Entangle CPC with CPA per user
 - Force attacker to spend real money

Detecting Click-Fraud

- Historical Statistics: Broker tracks historical volume of views, and click-through-rates for each publisher, and each advertiser. Flags abrupt changes.
 - Forces gradual attacks
 - Buys time for other approaches
- Bait Ads: Synthesized ads with content from one ad, and targeting information from a different ad. Expect few legit clicks.
 - Think CAPTCHAs for ads. Details veo.
 - Attacker could use cheap human labor
 - Potentially more time-consuming
 - ► Bait = semantic. CAPTCHA = syntactic.
 - Especially in non-English-native countries

Core protocols

- ► User profiling ► 📭
- Ad Auctions
- Reporting views/clicks . . Pso

Privacy

- Reference Monitor Pro
- Anonymizing the Click . . Pso
- Related Work

Deployability and Scalability

Ongoing work

Anonymizing the Click

User Privacy vs. Advertiser:

- Open question: What is "good enough"?
- Advertiser can see <u>IP address</u> if user clicks; also knows targeting info of ad that matched user. May link multiple clicks.
 - But clicks are rare; but payoff could be significant
 - Anonymizing proxy? Proxy learns profile. TOR?
 - Approach: anonymizing the click
 - Good enough? Don't know.
- Advertiser may link to user identity through <u>credit-card</u>
 - Single-use credit card tokens?
- Or shipping address for physical products
 - ► Anonymous remailers? (i.e. TOR for post)

Anonymizing the Click

- ► Client pre-establishes (single-use) SKey
- User privacy preserved
 - ► Broker, Advertiser don't learn which Client.
 - Dealer doesn't learn what Advertiser.
- Broker drops out at some point
 - Informs user what advertiser can learn
 - Open question: when?
 - After landing page?
 - Certainly before user inadvertently reveals PII
 - Or advertiser could encrypt exchange

Core protocols

- ► User profiling ► 📭
- Ad Auctions
- Reporting views/clicks . . Pso

Privacy

- Reference Monitor Pro
- Anonymizing the Click . . Pso
- Related Work

Deployability and Scalability

Ongoing work

Cryptographic Overheads

- Symmetric key operations quite fast
 - With hardware, can operate at line speeds
- Biggest concern: public-key operations
- Insight: Leverage idle clients
 - Save on datacenter costs (cores, cooling)

Offloading Public-Key Operations

- Broker learns M without any public-key ops.
- ► D1, D2 do not learn M. Can't MITM.

Offloading Public-Key Operations

- ▶ Broker, *O*1, *O*2 do not learn client identity.
- ▶ New keys for each message. Broker cannot link.

Offloading Public-Key Operations

 20x performance improvement in real deployment. See Microbenchmarks •

Core protocols

- ► User profiling ► 📭
- Ad Auctions
- Reporting views/clicks . . Pso

Privacy

- Reference Monitor Pro
- Anonymizing the Click . . Pso
- Related Work

Deployability and Scalability

Ongoing work

Reference Monitor Design

Blackbox monitoring of client

- Allows brokers to have proprietary code in client
- Allows for complex clients
- Monitor itself very simple
 - Open source
 - Created by privacy-advocates, or anti-virus vendor, or browser vendor, and verified by another
 - Correctness verified manually

Reference Monitor Design

What it does:

- Validates message contents
 - Client gives it plain text
 - Monitor validates, then encrypts
 - Thus no covert channel in salts, paddings, etc.
- ► Source of all randomness in messages
 - Specifically, generates session keys for Pub-Sub Ad Dissemination 250
 - Thus no covert channel in keys
- Staggers message bursts
 - May add arbitrary delay/jitter
 - Disrupt any covert channel in message timing
 - All protocol exchanges designed with this in mind (i.e. completely asynchronous)

Core protocols

- ► User profiling ► 📭
- Ad Auctions
- Reporting views/clicks . . Pso

Privacy

- Reference Monitor Pro
- Anonymizing the Click . . Pso
- Related Work

Deployability and Scalability

Ongoing work

User Privacy

- ► vs. Publisher
 - Privad doesn't change anything here
 - Client free to use anonymizing proxies as today
- vs. Advertiser
 - In theory, Privad doesn't change anything
 - In practice, Privad has better targeting. Advertiser can infer more on click.
 - ► Approach: Anonymizing the Click 50
- ▶ vs. Broker, vs. Dealer
 - Unlinkability: no user information can be associated with user's identity using internal or external means.

User Privacy

- 1. No Personally Identifying Information (PII), except IP address, explicitly leaves client
 - Validated by Reference Monitor
- 2. Dealer knows IP address, but no other user information
- 3. Broker has access to user information, but not IP address
 - Cannot link user information from multiple messages over time
 - Very little user information in any given message
 - Cannot de-anonymize user using external databases

Protecting ad targeting information

- Desirable or undesirable debatable
- e.g. cigarette companies targeting pre-teens
- ► OTOH, targeting as competitive edge
- Protecting against malware
 - Malware can see client data
 - ► OS could impose process based ACL (e.g. SELinux)
 - But fundamentally, malware can anyway spy on user

Core protocols

- ► User profiling ► 📭
- Ad Auctions
- Reporting views/clicks . . Pso

Privacy

- Reference Monitor Pro
- Anonymizing the Click . . Pso
- Related Work

Deployability and Scalability

Ongoing work

Implementation and Pilot Deployment

Implementation:

- Client and Simple monitor
 - ► 210kB Firefox addon¹; 4.2K LoC
 - ► Simple profiling (Facebook, Google Ad Preferences)
 - Ad dissemination, combined auctions, ad event reporting, crypto offload
- Broker, Dealer
 - ► Java servlet; 800 LoC and 300 LoC
- Wire protocol
 - ► JSON over HTTP; 2.4K LoC
 - In retrospect, mistake. Everything optimized; serialization/deserialization for text-based RPC now bottleneck.

¹See http://adresearch.mpi-sws.org
Implementation and Pilot Deployment

Deployment:

- Client scrapes Google ads, adds synthetic targeting and bid information
- Broker publishes to other clients
- Clients inject ads into existing Google adboxes
- ▶ Handful of alpha testers (~2083)
 - ▶ Running since Jan 1, 2010
 - ▶ 271K ads viewed, 238 clicks

Implementation and Pilot Deployment

Challenges:

- Webpage scraping is laborious
 - \blacktriangleright 20% of client code for just 2 websites
 - Not to mention keeping up-to-date
 - Could crowd-source module development/maintenance
 - Could build tools to generate scraping code
- Defining ad categories and mapping scraped information non-trivial
 - Currently, scraped info well structured. Categories superset of scraped info. Mapping trivial.
 - Problematic for unstructured information
 - Potentially, one-time manual effort plus small maintenance effort

Microbenchmarks

Client: workstation, laptop, netbook

- Serving: < 30ms for 100K local ads; 10x faster than today</p>
- Crypto: Unnoticeable 50–200ms; anyway async.
- ► Broker: 3GHz single-core
 - Subscribe/Reports without offload: bottleneck public-key ops. (~280 req/sec)
 - ► with offload: bottleneck RPC >6K req/sec
 - ► Publish: bottleneck symmetric-key ops. 750M ads/day
 - ► Auctions: depends on privacy 30K-80K ads/sec
- ► Dealer: 3GHz single-core
 - ► 200K clients per core. Client polls; bottleneck sockets

Core protocols

- ► User profiling ► 📭

- Reporting views/clicks . . Pso

Privacy

- Reference Monitor Pro
- Anonymizing the Click . . Pso
- Related Work

Deployability and Scalability

Ongoing work

Mobile Advertising

- ► Why?
 - Privacy even more important
 - Solutions today suck even more
 - Systems challenges: energy, bandwidth, connectivity
- Research Directions
 - Context extraction (done)
 - ▶ User interface (done?)
 - Leverage people, community, word-of-mouth?
 - Potentially, feed into search ads?
 - Build and deploy:
 - Focus on one vertical

Bait Ads for Detecting Click-Fraud

• Premise: More user-centric \Rightarrow better signals

- Say, user is dog owner
- Bait: Serve cat food photo ad for dog query. (effectively a captcha)
- User will likely not click; bot might
- Research Questions
 - How to automatically generate bait?
 - Passive bait vs. reactive bait: Tradeoffs?
 - Evaluate:
 - ► False positives
 - Resistance against attack (captcha farms)

- Discover correlations, e.g. X% users interested in P,Q also interested in R
 - Without violating privacy
 - Scalably
- Potential Approaches
 - <u>Distributed</u> differential privacy (general case)
 - Privacy-preserving aggregation
 - Active: flood query, count responses anonymously
 - Passive: proactively report (add limited noise)

Privacy-preserving PL Guarantees

Privacy (unlinkability) checked by compiler

- Discover subtle bugs in protocol
- Machine proof for complex distributed system
- Potential Approaches
 - ► Information flow + Interference
 - Maybe provide violation trace, e.g.
 - 1. Message X from A to B
 - 2. Message Y from A to C
 - 3. Message Z from C to B
 - 4. B can now infer P about A

Core protocols

- ► User profiling ► 📭
- Ad Auctions
- Reporting views/clicks . . Pso

Privacy

- Reference Monitor Pro
- Anonymizing the Click . . Pso
- Related Work

Deployability and Scalability

Ongoing work

Estimating Costs

- Bing advertising trace
 - ▶ 2M users sampled. 2 weeks. TBs of data.
 - ▶ 128 topic categories, gender, location
- Client
 - Up-to 9 Privad channels (2 median)
 - Storage: 1 MB cache (20 MB worst-case)
 - Network: 100 kB/day (1.25 MB worst-case)
- Dealer
 - ► Network per-client: 120 kB/day (88 MB/year)
 - EC2 pricing: \$0.01 per-user per-year
- Broker
 - Networking much more than today
 - Processing much less than today

Core protocols

- ► User profiling ► 📭
- Ad Auctions
- Reporting views/clicks . . Pso

Privacy

- Reference Monitor Pro
- Anonymizing the Click . . Pso
- Related Work

Deployability and Scalability

Ongoing work

Related Work

AdNostic [Toubiana et al.]

- Click billing (Homomorphic crypto)
- Partial solution. Weak privacy model.
- ► TargetedAds [Juels et al.]
 - Dissemination and reporting (Mixnet)
 - Privacy model too strong. No click-fraud resistance.
- ▶ Nurikabe [Levin et al.]
 - ▶ Reporting and click-fraud (Blind signatures)
 - ▶ Easily circumvented. Not scalable.
- Privad
 - ► Full solution, scalable (Dealer)
 - Harder to deploy.

Related Work

- ► AdNostic [Toubiana et al.]
 - Click billing (Homomorphic crypto)
 - ▶ Partial solution. Weak privacy model.
- ► TargetedAds [Juels et al.]
 - Dissemination and reporting (Mixnet)
 - Privacy model too strong. No click-fraud resistance.
- ▶ Nurikabe [Levin et al.]
 - ▶ Reporting and click-fraud (Blind signatures)
 - Easily circumvented. Not scalable.
- Privad
 - ► Full solution, scalable (Dealer)
 - Harder to deploy.

Related Work

- ► AdNostic [Toubiana et al.]
 - Click billing (Homomorphic crypto)
 - ▶ Partial solution. Weak privacy model.
- ► TargetedAds [Juels et al.]
 - Dissemination and reporting (Mixnet)
 - Privacy model too strong. No click-fraud resistance.
- ► Nurikabe [Levin et al.]
 - Reporting and click-fraud (Blind signatures)
 - Easily circumvented. Not scalable.
- Privad
 - ► Full solution, scalable (Dealer)
 - Harder to deploy.

Core protocols

- ► User profiling ► 📭
- Ad Auctions
- Reporting views/clicks . . Pso

Privacy

- Reference Monitor Pro
- Anonymizing the Click . . Pso
- Related Work

Deployability and Scalability

Ongoing work