
Generalizing Resource Allocation
for the Cloud

Anshul Rai, Ranjita Bhagwan, Saikat Guha

Microsoft Research India

Resource Allocation Scenario

• Capacity-based

VM Allocation

• Security domains

• Availability
domains

Resource Allocation problems keep changing
and adapting

*-Allocation

• VM Allocation

• Storage Allocation

• VLAN Allocation

• IP Address Space Allocation

• Server Allocation

• Network Allocation

Current approach

• Resource Management Tools (VMware,
Microsoft, etc)
– Implement their own heuristics
– Often, not exactly what the administrator needs

• Custom Heuristics
– Write and test the heuristics code
– Change the code, repeat testing every time allocation

constraints change.
– Sometimes, constraints start conflicting. Heuristics

difficult in such scenarios.

Why not consolidate?

• All these problems are variants of bin-packing

• So why not build a generic resource allocation
service

• Reduces the pain of designing, writing, testing
and extending custom heuristics

Solver-based Allocation

• Constraint-based programing

– Z3, Kodkod, eCLiPse

• Built our first version of allocation service

– Used Z3 and eCLiPse

– Tough to write constraints

– Too slow in a number of cases

Wrasse
(Resource Allocation Service)

• Tough to write constraints

• Front End: “Balls and Bins” abstraction

• Too slow

• Back End: GPU-based solution generation

Wrasse Abstraction

5 6 7 8 91 2 3 4

BALLS

BINS

RESOURCES

1 32 4 5 6

BALLS: Virtual Machines

BINS: Servers

Wrasse Abstraction

5 6 7 8 91 2 3 4

BALLS: Virtual Machines

BINS: Servers

RESOURCES

1 32 4 5 6

Server 1
CPU
capacity

Server 2
CPU
capacity

Wrasse Abstraction

5 6 7 8 91 2 3 4

BALLS: Virtual Machines

BINS: Servers

RESOURCES

1 32 4 5 6

Server 1
CPU
capacity

Server 2
CPU
capacity

Server 6
CPU
capacity

Link 1
Band-
width

Link 2
Band-
width

1 2 4 8

Resource Utilization Function

• If Ball X goes into Bin Y, which resources are
used, and by how much?

– Depends on the allocation so far

Resource Utilization Function

5 6 7 8 93

BALLS: Virtual Machines

BINS: Servers

RESOURCES

1 32 4 5 6

Server 6
CPU
capacity

Link 1
Band-
width

Link 2
Band-
width

1 2 4 8

Link 3
Band-
width

Link 5
Band-
width

Link 6
Band-
width

Link 8
Band-
width

Abstraction

• Declare: balls, bins and resources with their
capacities

• Write: Resource allocation function.

VM Placement Specification

Friends, Foes and Pinning

• Friends

– Always put them on the same bin

• Foes

– Put at least one of the foes in a different bin

• Pin

– Pin ball X on bin Y

– Important for incremental changes

Soft constraints

• “Satisfy friend constraint with a probability of
90%”

• “Allow Server 1’s CPU capacity to go above
limit by 10% with a probability of 5%”

Evolving the Allocation Spec

Evolving the Allocation Spec
SecondNet: Network Virtualization

A Discussion on this Design

• Balls of only one type, bins of only one type

• No notion of a network

• As a result, resource utilization function can
get complicated

• But simplicity important for solver
implementation.

Can we model different kinds of balls?
Can we model different kinds of bins?
Can we model resource utilizations other than additive?

Back End: GPU-based solver

• Pick a ball at random
• Put it in the first bin
• Satisfy all Friend-Foe constraints
• Use resource utilization funtion to ensure no resource

capacities are exceeded
• Pick another ball … until all balls have been tried for

this bin.

IP IP IP IP

Local Local Local Local

Global Memory

Explore vs Exploit

GPU Implementation

• Version 1: Each thread finds a potential
solution (16 solutions simultaneously
checked)

– Memory issues

– Scale issues

• Version 2: Each thread-group finds a potential
solution (4 solutions simultaneously checked)

IP IP IP IP

Local Local Local Local

VM Placement
Input

Solution quality (comparing to SCVMM heuristics)

Solution time (ms)

Network Virtualization

Secondnet
Wrasse

SecondNet (CoNext 2010)
1024 servers, 2-level fat-tree.
Average Virtual Data Center (VDC) size: 94.
Keep assigning VDCs until assignment fails

Performance: GPU vs CPU

• Used AMD HD6990 and the nVidia Tesla

• Tesla implementation worked about 8.5 times
faster than 3 GHz Intel Core 2 Duo processor

Related Work

• Rhizoma: Used eCLiPse for configuration
management
– Runs into performance issues with large-sized

problems.

• Cologne: Distributed platform for configuration
management
– Uses constraint solvers as well in the back-end.

• Various heuristic-based solutions for
configuration mangement
– Wrasse can encode all that we have encountered.

Summary

• Presented a generic resource allocation
service for the cloud

• Good performance, both in terms of time to
run and solution quality

• We have built a web service around Wrasse so
it can be easily used

Questions?

